Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.172
Filtrar
1.
Acta Pharmacol Sin ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565961

RESUMO

Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 µM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg-1·d-1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.

2.
Environ Toxicol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567545

RESUMO

Osteosarcoma is a malignant bone tumor affecting adolescents and children. No effective treatment is currently available. Asiatic acid (AA), a triterpenoid compound found in Centella asiatica, possesses anti-tumor, anti-inflammatory, and anti-oxidant properties in various types of tumor cells. This study aims to determine whether AA exerts antitumor effects in human osteosarcoma cells. Our results indicate that AA does not influence the viability, proliferative rate, or cell cycle phase of human osteosarcoma cells under non-toxic conditions. AA suppressed osteosarcoma cell migration and invasion by down-regulating matrix metalloproteinase 1 (MMP1) expression. Data in the TNMplot database suggested MMP1 expression was higher in osteosarcoma than in normal tissues, with associated clinical significance observed in osteosarcoma patients. Overexpression of MMP1 in osteosarcoma cells reversed the AA-induced suppression of cell migration and invasion. AA treatment decreased the expression of specificity protein 1 (Sp1), while Sp1 overexpression abolished the effect of AA on MMP1 expression and cell migration and invasion. AA inhibited AKT phosphorylation, and treatment with a PI3K inhibitor (wortmannin) increased the anti-invasive effect of AA on osteosarcoma cells via the p-AKT/Sp1/MMP1 axis. Thus, AA exhibits the potential for use as an anticancer drug against human osteosarcoma.

3.
J Agric Food Chem ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588384

RESUMO

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.

4.
Front Immunol ; 15: 1368322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558821

RESUMO

Introduction: Activation of complement through the alternative pathway (AP) has a key role in the pathogenesis of IgA nephropathy (IgAN). We previously showed, by intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE), C57BL/6 mice develop mild kidney damage in association with glomerular IgA deposition. To further address complement activity in causing glomerular histological alterations as suggested in the pathogenesis of IgAN, here we used mice with factor H mutation (FHW/R) to render AP overactivation in conjunction with LCWE injection to stimulate intestinal production of IgA. Methods: Dose response to LCWE were examined between two groups of FHW/R mice. Wild type (FHW/W) mice stimulated with LCWE were used as model control. Results: The FHW/R mice primed with high dose LCWE showed elevated IgA and IgA-IgG complex levels in serum. In addition to 100% positive rate of IgA and C3, they display elevated biomarkers of kidney dysfunction, coincided with severe pathological lesions, resembling those of IgAN. As compared to wild type controls stimulated by the same high dose LCWE, these FHW/R mice exhibited stronger complement activation in the kidney and in circulation. Discussion: The new mouse model shares many disease features with IgAN. The severity of glomerular lesions and the decline of kidney functions are further aggravated through complement overactivation. The model may be a useful tool for preclinical evaluation of treatment response to complement-inhibitors.


Assuntos
Glomerulonefrite por IGA , Lacticaseibacillus casei , Camundongos , Animais , Fator H do Complemento/genética , Camundongos Endogâmicos C57BL , Glomerulonefrite por IGA/patologia , Proteínas do Sistema Complemento/genética , Imunoglobulina A , Mutação
5.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1438-1445, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621927

RESUMO

Based on the sarcoma receptor coactivator(Src)/phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, the mechanism of action of bulleyaconitine A in the treatment of bone destruction of experimental rheumatoid arthritis(RA) was explored. Firstly, key targets of RA bone destruction were collected through GeneCards, PharmGKB, and OMIM databa-ses. Potential targets of bulleyaconitine A were collected using SwissTargetPrediction and PharmMapper databases. Next, intersection targets were obtained by the Venny 2.1.0 platform. Protein-protein interaction(PPI) network and topology analysis were managed by utilizing the STRING database and Cytoscape 3.8.0. Then, Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were conducted in the DAVID database. AutoDock Vina was applied to predict the molecular docking and binding ability of bulleyaconitine A with key targets. Finally, a receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model was established in vitro. Quantitative real-time polymerase chain reaction(qRT-PCR) was used to detect the mRNA expression levels of related targets, and immunofluorescence and Western blot were adopted to detect the protein expression level of key targets. It displayed that there was a total of 29 drug-disease targets, and Src was the core target of bulleyaconitine A in anti-RA bone destruction. Furthermore, KEGG enrichment analysis revealed that bulleyaconitine A may exert an anti-RA bone destruction effect by regulating the Src/PI3K/Akt signaling pathway. The molecular docking results showed that bulleyaconitine A had better bin-ding ability with Src, phosphatidylinositol-4,5-diphosphate 3-kinase(PIK3CA), and Akt1. The result of the experiment indicated that bulleyaconitine A not only dose-dependently inhibited the mRNA expression levels of osteoclast differentiation-related genes cathepsin K(CTSK) and matrix metalloproteinase-9(MMP-9)(P<0.01), but also significantly reduced the expression of p-c-Src, PI3K, as well as p-Akt in vitro osteoclasts(P<0.01). In summary, bulleyaconitine A may inhibit RA bone destruction by regulating the Src/PI3K/Akt signaling pathway. This study provides experimental support for the treatment of RA bone destruction with bulleyaconitine A and lays a foundation for the clinical application of bulleyaconitine A.


Assuntos
Aconitina/análogos & derivados , Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/genética , Simulação de Acoplamento Molecular , Transdução de Sinais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621928

RESUMO

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Membrana Sinovial , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Perfilação da Expressão Gênica/métodos
7.
Biol Res ; 57(1): 13, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561846

RESUMO

BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS: The activation model of ESCs was constructed by TGF-ß1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.


Assuntos
Glutamina , Mitocôndrias , Feminino , Camundongos , Humanos , Animais , Glutamina/metabolismo , Fibrose , Mitocôndrias/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo , Endométrio/metabolismo , Endométrio/patologia
8.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38572943

RESUMO

Making accurate forecasts for a complex system is a challenge in various practical applications. The major difficulty in solving such a problem concerns nonlinear spatiotemporal dynamics with time-varying characteristics. Takens' delay embedding theory provides a way to transform high-dimensional spatial information into temporal information. In this work, by combining delay embedding theory and deep learning techniques, we propose a novel framework, delay-embedding-based forecast Machine (DEFM), to predict the future values of a target variable in a self-supervised and multistep-ahead manner based on high-dimensional observations. With a three-module spatiotemporal architecture, the DEFM leverages deep neural networks to effectively extract both the spatially and temporally associated information from the observed time series even with time-varying parameters or additive noise. The DEFM can accurately predict future information by transforming spatiotemporal information to the delay embeddings of a target variable. The efficacy and precision of the DEFM are substantiated through applications in three spatiotemporally chaotic systems: a 90-dimensional (90D) coupled Lorenz system, the Lorenz 96 system, and the Kuramoto-Sivashinsky equation with inhomogeneity. Additionally, the performance of the DEFM is evaluated on six real-world datasets spanning various fields. Comparative experiments with five prediction methods illustrate the superiority and robustness of the DEFM and show the great potential of the DEFM in temporal information mining and forecasting.

9.
Medicine (Baltimore) ; 103(14): e37681, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579048

RESUMO

OBJECTIVE: To evaluate the relationship between CXCL12/CXCR4 and the progress, prognosis of esophageal squamous cell carcinoma (ESCC), providing evidence for potential early diagnosis, clinical treatment, prognosis evaluation, and therapeutic target of ESCC. METHODS: Databases of PubMed, the Cochrane Library, Embase, and Web of Science were searched for the relationship between CXCL12/CXCR4 and clinicopathological characteristics and survival time of ESCC. Stata16.0 software was used to conduct meta-analysis. RESULTS: A total of 10 studies involving 1216 cases of patients with ESCC were included in our study. The results indicated that high-level expression of CXCR4 was significantly correlated with tumor differentiation [OR = 0.69, 95% confidence interval (CI): (0.50, 0.97)], tumor infiltration [OR = 0.39, 95% CI: (0.25, 0.61)], lymph node metastasis [OR = 0.36, 95% CI: (0.21, 0.61)], clinical stage [OR = 0.33, 95% CI: (0.24, 0.45)] of ESCC. The expression of CXCR4 was also significantly correlated with OS [HR = 2.00, 95% CI: (1.63, 2.45)] and disease-free survival [HR = 1.76, 95% CI: (1.44, 2.15)] in patients of ESCC after surgical resection. No significant relationship was observed between the expression of CXCL12 and the clinicopathological characteristics of ESCC. CONCLUSION: CXCR4 might be a potential biomarker for the progress and prognosis evaluation, and therapeutic target for ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Prognóstico , Biomarcadores Tumorais/metabolismo , Receptores CXCR4
10.
Adv Mater ; : e2403664, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625813

RESUMO

Direct formate fuel cells (DFFCs) receive increasing attention as promising technologies for the future energy mix and environmental sustainability, as formate can be made from carbon dioxide utilization and is carbon neutral. Herein, heterostructured platinum-palladium alloy and oxides nanowires (PtPd-ox NWs) with abundant defect sites are synthesized through a facile self-template method and demonstrated high activity toward formate electrooxidation reaction (FOR). The electronic tuning arising from the heterojunction between alloy and oxides influence the work function of PtPd-ox NWs. The sample with optimal work function reveals the favorable adsorption behavior for intermediates and strong interaction in the d-p orbital hybridization between Pt site and oxygen in formate, favoring the FOR direct pathway with a low energy barrier. Besides the thermodynamic regulation, the heterostructure can also provide sufficient hydroxyl species to facilitate the formation of carbon dioxide due to the ability of combining absorbed hydrogen and carbon monoxide at adjacent active sites, which contributes to the improvement of FOR kinetics on PtPd-ox NWs. Thus, heterostructured PtPd-ox NWs achieve dual regulation of FOR thermodynamics and kinetics, exhibiting remarkable performance and demonstrating potential in practical systems.

11.
J Colloid Interface Sci ; 667: 425-432, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640661

RESUMO

Developing an efficient and low-cost oxygen reduction electrocatalyst is essential for the application of aqueous zinc-air batteries (ZABs). Herein, we report a facile adsorption-confined pyrolysis strategy to fabricate the hybrid electrocatalyst (denoted as Co9S8/CoSA-PC) by embedding Co9S8 nanoparticles into Co single atoms (Co-SAs) anchored porous carbon sheets for boosting oxygen reduction reaction (ORR) durability. In this strategy, the Co2+ ions are first absorbed into oxygen-rich porous carbon nanosheets and further form the Co-SAs with the help of thiourea in the following pyrolysis procedure, which is believed to be able to confine the generated Co9S8 nanoparticles into carbon frameworks due to their interface interaction. Benefiting from the synergistic effect of different components, the obtained Co9S8/CoSA-PC electrocatalyst for ORR exhibits outstanding catalytic activity with a half-wave potential of 0.82 V and a distinguished long-term durability with a current retention of 80 % after cycling 80 h under alkaline conditions, which is superior to commercial Pt/C. Moreover, the assembled ZABs with Co9S8/CoSA-PC as cathodic catalyst deliver a high specific capacity of 764 mAh gZn-1 at 10 mA cm-2 and the outstanding peak power density of up to 221.4 mW cm-2. This work provides a novel structure design strategy to prepare transition metal sulfide-based electrocatalysts with superior durability for ORR.

12.
Biochem Pharmacol ; : 116217, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641306

RESUMO

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported. Here, we discovered a new class of Hippo pathway activator, YL-602, which inhibited CTGF expression in cells irrespective of cell density and the presence of serum. Mechanistically, YL-602 activates the Hippo pathway via MST1/2, which is different from known activators of Hippo pathway. In vitro, YL-602 significantly induced tumor cell apoptosis and inhibited colony formation of tumor cells. In vivo, oral administration of YL-602 substantially suppressed the growth of cancer cells by activation of Hippo pathway. Overall, YL-602 could be a promising lead compound, and deserves further investigation for its mechanism of action and therapeutic applications.

13.
Biomed Pharmacother ; 174: 116598, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615609

RESUMO

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.

14.
J Gastroenterol ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613690

RESUMO

BACKGROUND: Information on the dynamics of metabolic dysfunction-associated steatotic liver disease (MASLD) among hepatitis C virus patients achieving sustained virologic response (SVR12) with direct-acting antivirals (DAAs) is limited. METHODS: We enrolled 1512 eligible participants in this prospective study. MASLD was defined by a controlled attenuation parameter (CAP) of ≥248 dB/m utilizing vibration-controlled transient elastography in conjunction with presence of ≥1 cardiometabolic risk factor. The distribution of MASLD and the changes in CAP were evaluated before treatment and at SVR12. Forward stepwise logistic regression analyses were performed to determine factors significantly associated with the regression or emergence of MASLD. RESULTS: The prevalence of MASLD decreased from 45.0% before treatment to 36.1% at SVR12. Among 681 participants with MASLD before treatment, 144 (21%) exhibited MASLD regression at SVR12. Conversely, among 831 participants without MASLD before treatment, 9 (1.1%) developed MASLD at SVR12. Absence of type 2 diabetes (T2D) [odds ratio (OR): 1.73, 95% confidence interval (CI): 1.13-2.65, p = 0.011], age > 50 years (OR: 1.73, 95% CI: 1.11-2.68, p = 0.015), and alanine transaminase (ALT) ≤ 2 times the upper limit of normal (ULN) (OR: 1.56; 95% CI: 1.03-2.37, p = 0.035) were associated with the regression of MASLD. Presence of T2D was associated with the emergence of MASLD (OR: 5.83, 95% CI: 1.51-22.56, p = 0.011). CONCLUSIONS: The prevalence of MASLD decreased after achieving SVR12 with DAAs. Patients with pre-existing T2D showed a diminished probability of MASLD regression and a heightened risk of MASLD emergence post-SVR12.

15.
J Transl Med ; 22(1): 333, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576021

RESUMO

BACKGROUND: Disease progression in biosystems is not always a steady process but is occasionally abrupt. It is important but challenging to signal critical transitions in complex biosystems. METHODS: In this study, based on the theoretical framework of dynamic network biomarkers (DNBs), we propose a model-free method, edge-based relative entropy (ERE), to identify temporal key biomolecular associations/networks that may serve as DNBs and detect early-warning signals of the drastic state transition during disease progression in complex biological systems. Specifically, by combining gene‒gene interaction (edge) information with the relative entropy, the ERE method converts gene expression values into network entropy values, quantifying the dynamic change in a biomolecular network and indicating the qualitative shift in the system state. RESULTS: The proposed method was validated using simulated data and real biological datasets of complex diseases. The applications show that for certain diseases, the ERE method helps to reveal so-called "dark genes" that are non-differentially expressed but with high ERE values and of essential importance in both gene regulation and prognosis. CONCLUSIONS: The proposed method effectively identified the critical transition states of complex diseases at the network level. Our study not only identified the critical transition states of various cancers but also provided two types of new prognostic biomarkers, positive and negative edge biomarkers, for further practical application. The method in this study therefore has great potential in personalized disease diagnosis.


Assuntos
Dinitrofluorbenzeno/análogos & derivados , Entropia , Humanos , Biomarcadores , Prognóstico , Progressão da Doença
16.
ACS Appl Mater Interfaces ; 16(15): 19730-19741, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591140

RESUMO

Metal-organic framework materials can be converted into carbon-based nanoporous materials by pyrolysis, which have a wide range of applications in energy storage. Here, we design special interface engineering to combine the carbon skeleton and nitrogen-doped carbon nanotubes (CNTs) with the transition metal compounds (TMCs) well, which mitigates the bulk effect of the TMCs and improves the conductivity of the electrodes. Zeolitic imidazolate framework-67 is used as a precursor to form a carbon skeleton and a large number of nitrogen-doped CNTs by pyrolysis followed by the in situ formation of Co3O4 and CoS2, and finally, Co3O4@CNTs and CoS2@CNTs are synthesized. The obtained anode electrodes exhibit a long cycle life and high-rate properties. In lithium-ion batteries (LIBs), Co3O4@CNTs have a high capacity of 581 mAh g-1 at a high current of 5 A g-1, and their reversible capacity is still 1037.6 mAh g-1 after 200 cycles at 1 A g-1. In sodium-ion batteries (SIBs), CoS2@CNTs have a capacity of 859.9 mAh g-1 at 0.1 A g-1 and can be retained at 801.2 mAh g-1 after 50 cycles. The unique interface engineering and excellent electrochemical properties make them ideal anode materials for high-rate, long-life LIBs and SIBs.

17.
Sci Total Environ ; 928: 172461, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615767

RESUMO

Wildfire smoke greatly impacts regional atmospheric systems, causing changes in the behavior of pollution. However, the impacts of wildfire smoke on pollution behavior are not easily quantifiable due to the complex nature of atmospheric systems. Air pollution correlation networks have been used to quantify air pollution behavior during ambient conditions. However, it is unknown how extreme pollution events impact these networks. Therefore, we propose a multidimensional air pollution correlation network framework to quantify the impacts of wildfires on air pollution behavior. The impacts are quantified by comparing two time periods, one during the 2023 Canadian wildfires and one during normal conditions with two complex network types for each period. In this study, the value network represents PM2.5 concentrations and the rate network represents the rate of change of PM2.5 concentrations. Wildfires' impacts on air pollution behavior are captured by structural changes in the networks. The wildfires caused a discontinuous phase transition during percolation in both network types which represents non-random organization of the most significant spatiotemporal correlations. Additionally, wildfires caused changes to the connectivity of stations leading to more interconnected networks with different influential stations. During the wildfire period, highly polluted areas are more likely to form connections in the network, quantified by an 86 % and 19 % increase in the connectivity of the value and rate networks respectively compared to the normal period. In this study, we create novel understandings of the impacts of wildfires on air pollution correlation networks, show how our method can create important insights into air pollution patterns, and discuss potential applications of our methodologies. This study aims to enhance capabilities for wildfire smoke exposure mitigation and response strategies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38656730

RESUMO

BACKGROUND: This study examines incidence, mortality, medical expenditure and prescription patterns for asthma on a national scale, particularly in Asian countries for asthma is limited. Our aim is to investigate incidence, mortality, prescription patterns and provide a comprehensive overview of healthcare utilization trends for asthma from 2009 to 2018. METHODS: We included patients diagnosed with asthma between 2009 and 2018. We excluded patients with missing demographic data. Our analysis covered comorbidities, including diabetes mellitus, hypertension, allergic rhinitis, eczema, atopic dermatitis, coronary artery disease, congestive heart failure, chronic kidney disease, chronic hepatitis, stroke, and cancer. Investigated medications comprised oral and intravenous steroids, short-acting beta-agonists, inhaled corticosteroids (ICS), combinations of ICS and long-acting beta-agonists, long-acting muscarinic antagonists, and leukotriene receptor antagonists montelukast. We also assessed the number of outpatient visits, emergency visits, and hospitalizations per year, as well as the average length of hospitalization and average medical costs. RESULTS: The study included a final count of 88,244 subjects from 1,998,311 randomly selected samples between 2000 and 2019. Over the past decade, there was a gradual decline in newly diagnosed asthma patients per year, from 10,140 to 6,487. The mean age annually increased from 47.59 in 2009 to 53.41 in 2018. Over 55% of the patients were female. Eczema was diagnosed in over 55% of the patients. Around 90% of the patients used oral steroids, with a peak of 97.29% in 2018, while the usage of ICS varied between 86.20% and 91.75%. Intravenous steroids use rose from 40.94% in 2009 to 54.14% in 2018. The average annual hospital stay ranged from 9 to 12 days, with a maximum of 12.26 days in 2013. Lastly, the average medical expenses per year ranged from New Taiwan dollars 5558 to 7921. CONCLUSIONS: In summary, both asthma incidence and all-cause mortality rates decreased in Taiwan from 2009 to 2018. Further analysis of medical expenses in patients with asthma who required multiple hospitalizations annually revealed an increase in outpatient and emergency visits and hospitalizations, along with longer hospital stays and higher medical costs.

19.
Mol Cancer Ther ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657233

RESUMO

IFx-Hu2.0 was designed to encode part of the Emm55 protein contained within a plasmid in a formulation intended for transfection into mammalian cells. IFx-Hu2.0 promotes both adaptive and innate immune responses in animal studies. Furthermore, previous studies have demonstrated safety/efficacy in equine, canine, and murine species. We present the first-in-human study of IFx-Hu2.0, administered by intralesional injection into melanoma tumors of seven patients with stage III/IV unresectable melanoma. No dose-limiting toxicities attributable to IFx-Hu2.0 were observed. Grade 1/2 injection site reactions were observed in five of seven patients. IgG and IgM responses were seen in the peripheral blood to Emm55 peptides and known melanoma antigens, suggesting that IFx-Hu2.0 acts as an individualized "in-situ vaccine." Three of four patients previously refractory to anti-PD1 experienced clinical benefit upon subsequent anti-PD1-based treatment. Therefore, this approach is feasible, and clinical/correlative outcomes warrant further investigation for treating metastatic melanoma patients as an immune priming agent.

20.
Int J Biol Macromol ; : 131788, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657931

RESUMO

While individual starch types may not possess the ideal gelatinization and retrogradation properties for specific applications, the amalgamation of multiple starch varieties might bestow desirable physicochemical properties upon resulting starch-based products. This study explored the impact of incorporating purple rice starch (PRS), as a novel starch variant (up to 15 % PRS), on the gelatinization and retrogradation (within 14 days) of regular wheat starch (WS). Rheological and texture assessments demonstrated that the introduction of PRS diminished the viscoelasticity and hardness of fresh WS paste. Additionally, in the case of retrograded WS pastes stored at 4 °C for 1-14 days, the incorporation of 10 % or 15 % PRS effectively retarded the reduction in transparency and significantly reduced hardness, retrogradation degree, the ratio of absorbance at 1047/1017 cm-1, and relative crystallinity. Notably, 10 % PRS results in a more pronounced effect. Conversely, 5 % PRS induced an opposing impact on retrograded WS post-storage. Moreover, scanning electron microscopy revealed that as the proportion of PRS increased, the microstructure of gelatinized WS-PRS closely resembled that of pure PRS. In conclusion, the diverse effects of varying PRS proportions on WS alter the texture and characteristics of starch-based foods, underscoring the potential of starch blending for improved applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...